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The behavior of a periodic array of Rayleigh-Taylor bubblessand spikesd of wavelengthl is investigated at
different density ratios using three-dimensional numerical simulations. The scaled bubble and spike velocities
svb,s/ÎAgl /2d, are found to vary with the Atwood numberA, and are compared with recent potential flow
theories. Simulations at different grid resolutions reveal that the convergence rates of bubble velocities improve
with increasingA, while the converse holds true for spike velocities. The asymptotic radius of curvature at the
bubble tip is found to be independent ofA, consistent with potential flow theory. These results are useful in
validating potential flow theory models of the nonlinear stage of the Rayleigh-Taylor instability.
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I. INTRODUCTION

The interface between two fluids of different densities
sr1.r2d is unstable if the light fluid pushes against the
heavy fRayleigh-TaylorsRTd instability f1,2gg. Such insta-
bilities have been observed in type II supernovaef3g, and in
the inertial confinement fusion processf4g, where the RT-
driven mixing reduces the thermonuclear yield. Infinitesimal
perturbations imposed at the interface grow exponentially in
time f5g according to

h = h0 coshsGtd. s1d

At large amplitudes, the light fluid penetrates the heavy in
the form ofbubbleswith a constant terminal velocity, while
fingers of the heavy fluid formspikes. For small density dif-
ferences, the flow is symmetric with respect to the bubble
and spike penetration. This symmetry is broken at higher
Atwood numbersfA=sr1−r2d / sr1+r2dg, as spikes grow
faster than bubbles, ultimately approaching free fallshs

, t2d at infinite density ratios.
When a spectrum of wavelengths is present, the resulting

flow is chaotic, and evolves through interactions between
bubblessspikesd of different sizes. These modal interactions
may involve the merger of two bubbles to form a larger
structuref6,7g, or the sampling of successively longer wave-
lengths from the modes present in the initial conditionsf8g.
Such phenomena are often described by modeling single-
bubble behavior and bubble-bubble interactions in the non-
linear stage. Furthermore, models that characterize the role
of the initial conditions on the turbulent RT flowf8,9g also
rely on single-mode dynamics in the nonlinear stage, to de-
velop a picture of the turbulent RT flow. However, such ef-
forts depend critically on the knowledge of single-mode
bubble terminal velocities as a function of the Atwood num-
ber f8g. In this paper, we report results from numerical simu-
lations of the linear and nonlinear stages of RT evolution. We
review three recently proposed potential flow models of the
RT bubble, and conclude that our results compare favorably
with the model of Goncharovf17g.

Davies and Taylorf10g were the first to propose a poten-
tial flow theory approach to describe single-mode bubble be-
havior in the nonlinear regime. Layzerf11g suggested a simi-

lar potential flow model to describe the flow around the
bubble tip for a fluid-vacuum interfacesA=1d. He considered
cylindrical bubbles in three dimensionss3Dd, represented by
a Bessel function for the velocity potential. Then the Ber-
noulli equations are applied to the bubble tip, to yield ordi-
nary differential equations for the position, velocity, and ra-
dius of curvature of the bubble. Analytical solutions to these
equations were provided recently by Mikaelianf12g. The
asymptotic bubble velocity from such models is

Vb = CÎgl, s2d

whereg is the acceleration,l is the wavelength, andC was
determined to be,0.5 from experimentsf10,13g. Zhangf14g
extended Layzer’s model to RT spikes atA=1. Hecht, Alon,
and Shvartsf15g applied a similar analysis to other flow
situations including bubble evolution through a layer of finite
thickness s2Dd, two-bubble competitions2Dd, and a 3D
bubble in a rectangular geometry. They also argued that to
second order, a square mode has the same growth rate as a
cylindrical mode. The 3D simulations of Hechtet al. f16g
also obtain similar penetration distances for square and cy-
lindrical modes to within numerical accuracy. Thus, our re-
sults below for a square periodic array are valid for a flow
initialized with a Bessel functionJ0 for the density profile.

More recently, Goncharovf17g and Sohnf18g have ex-
tended such models to arbitrary density ratios. The models
apply potential theory to the flow around the bubble tip, and
converge to Layzer’s approximation in the limit ofA=1.
Goncharov uses a Bessel function for the velocity potentials
of the heavy and light fluids, and finds in the asymptotic
limit that the bubble velocity is given by

vb = 1.02Î 2A

1 + A

g

k
. s3d

Sohn, who uses a different form of the potential function
sdiscussed in Sec. IIId for the light fluid, obtains

vb ,ÎAgR

b1
, s4d

whereb1 represents the first zero of the Bessel function,R is
the tube radius, and may be related to the wave number using
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b1/R,k. For lower density ratios, the two models diverge,
until the ratio of the Froude numbers from Sohn’s model to
Goncharov’s model is 1:1.4 atA=0. The steady-state bubble
velocity may also be obtained by equating the buoyancy and
drag forces experienced by a rising 3D bubble. Interestingly,
drag-buoyancy models such as those proposed by Alonet al.
f19g and Oronet al. f20g agree with Eq.s3d. Note that while
the Froude number associated with a RT bubble has been
defined in several ways, we adopt the physically intuitive
definition of Scorerf21g and Alonet al. f19g

vb = FrÎdr

r
g

Db

2
. s5d

Defined this way, the Froude number may be interpreted as a
ratio of terms in the steady-state drag-buoyancy equation,
and will be later shown to be independent of the Atwood
number.

We also compare our results with a recent model proposed
by Abarzhi, Nishihara, and Glimmf22g who employ a mul-
tiple harmonic analysis to explore the shape of the bubble at
late time sGoncharov, who also uses a similar analysis, re-
ports that the amplitudes of higher harmonic terms used to
describe the bubble front vanish rapidlyd. However, the cen-
tral difference between the Goncharov-type modelssinclud-
ing the models of Sohn and Layzerd, and the approach
adopted by Abarzhiet al. is that the latter forces the flow to
satisfy boundary conditions at ±̀ along the direction of
gravity. Goncharov’s analysis, on the other hand, is valid
near the bubble tip: his choice of potential function includes
a source term for mass at negative infinity, to satisfy the
zero-mass-flux condition across the interface. Abarzhiet al.’s
terminal velocitysand bubble curvaturezd differs from Gon-
charov’s at low Atwood numbers. While the expressions for
the exact solutions will not be reproduced here, they may be
obtained by solving the following set of equations forz and
vb f22g:

S z

k
D4

− S z

k
D3 1

A
+

9

32
S z

k
D2

− S 3

16
D3

= 0, s6d

vb = Îg/kS8uzu
k
D3/2

. s7d

In this paper, we test the above models using 3D numerical
simulations of a square periodic array of RT bubbles, at dif-
ferent grid resolutions. Section II contains a description of
the numerical technique used, and the computational setup.
The results are presented in Sec. III, while Sec. IV contains a
discussion and summary of our findings.

II. NUMERICS

A 3D, third-order accurate, finite volume Eulerian solver
was used for the numerical calculations. The algorithm and
numerical techniques are described in detail inf23g. Some
essential features are reviewed herein. Numerical dissipation
provides an artificial viscosity that smooths out sharp gradi-
ents characteristic of Euler equation solutions. The van Leer
techniquef24g was used to determine the convective fluxes,

thus preventing spurious overshoots and undershoots associ-
ated with higher order numerical schemes. A Poisson equa-
tion for pressure correction is solved at every time step to
enforce global mass conservation to within a tolerance of
10−5. This algorithm belongs to the class of techniques com-
monly referred to as monotone integrated large eddy simula-
tions sMILESd, and has been demonstrated to be effective in
the simulation of flows with shocks and discontuinities such
as RT and Richtmyer-Meshkov instabilitiesf25g.

Periodic boundary conditions in the lateral directions, and
zero-flux conditions in the vertical direction were employed.
The perturbations were initialized as cosine waves of the
density surface:

h0sx,yd = a0HcosS2px

l
D + cosS2py

l
DJ . s8d

This form of the perturbation places the bubble at the center
of the box, while the spikes appear at the four corners. The
wavelength of the perturbation was set to 10 cm, while the
amplitudea0 was 0.1 cm to ensure that the modes are well
within the nonlinear saturation thresholdshnlk,1d. To test
the effect of zoning, the calculations were performed at grid
resolutions ofl /D=4, 8, 16, 32, and 64 whereD is the zone
width. The size of the computational domain was 10310
340 cm3 in thex, y, andz directions, respectivelyshere,z is
the direction of the gravity vectord. The simulations had At-
wood numbers of 0.005, 0.1, 0.25, 0.5, 0.75, 0.9, and 1. The
acceleration was set to 2 cm/s2.

III. RESULTS

Figures 1sad, 1sbd, and 1scd show the isosurfaces of 50%
volume fraction at late times forA=0.1, 0.5, and 0.9, respec-
tively. Spikes form at the corners of the computational do-
main, and are shown in a diagonal cross section for these
simulations in Figs. 1sdd, 1sed, and 1sfd. The simulations
were performed at a resolution of 323323128 zones.
Bubbles and spikes show greater symmetry at lower density
differencesfFigs. 1sdd and 1sedg, while spikes outpace bubble
growth atA=0.9 Fig. 1sfd. The lower Atwood number cases
show more vorticity in general, evidenced by the formation
of Kelvin-Helmholtz type roll-ups on the spike surfaces. The
times represented in Fig. 1 were chosen such that the bubble
penetration in each of the cases is roughly the same, i.e.,
hb/l,0.8.

The corresponding bubble amplitudehb fshown on a
semilogarithmic plot in Fig. 2sadg was deduced by tracking
the bubble tip. The bubble amplitudehb sin centimetersd,
shows a region of exponential growthst,4 sd, followed by
saturation of the bubble velocityfFig. 2sbdg. The bubble am-
plitude from Eq.s1d is shown as the solid line in Fig. 2sad,
and is in good agreement with our simulations fort,4 s.
The Froude number and the scaled bubble velocity were then
inferred from fitting a straight line to]hb/]t in Fig. 2sbd at
late times.

At a resolution of 64 zones/l, a numerical instability at
the bubble tip was observed forA.0.75. The bubbles which
occupy much of the computational domain at these density
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ratios are over-resolved. Consequently, secondary ridges
form at the bubble front at late times. This instability is not
unlike that observed by Lif26g, at A=0.905 and near the
incompressible limit. The instability observed here disap-
pears with the addition of a small viscosity that damps the
artificial secondary modes. This viscosity was chosen to
match the numerical dissipation from the 32 zones/l case
which remained stable even at high Atwood numbers. The
numerical viscosity may be determined from the scaling
f27,28g

n = ÃÎAgD3, s9d

where the coefficientÃ was obtained by fitting the numerical
solution to the classical growth rates in the linear stage as
described below.

Indeed, the scaling relations9d may be directly verified
using our simulations. The exponential growth rateG nor-
malized by the inviscid classical growth rateÎAkg is shown
in Fig. 3sad for different Atwood numbers. The growth rate
approaches,95% of its inviscid value atkD,0.098scorre-
sponding to 64 zones/ld. G is modified in the presence of
viscosity according to the dispersion relation given by Chan-
drasekharf5g. Solving the dispersion equation to fit the nu-
merically obtained growth rates, we may infer an effective
numerical viscosityn and henceÃ from Eq. s9d. The result,
shown in Fig. 3sbd for different zoning, is independent ofA,
and corresponds toÃ=0.33±0.09, thus validating Eq.s9d.
The 64 zones/l case exhibits higher values ofÃ, because
the convergence rate drops at higher resolutions, indicating

FIG. 1. Evolution of a single-mode RT bubble
for A=0.1 sad, 0.5 sbd, and 0.9 scd. The spike
cross sections in a diagonal plane are shown in
sdd, sed, and sfd for the same cases. The times
shown are such thathb,0.8l for each case.

FIG. 2. Time trace of bubble
amplitudehb sad and velocityvb

sbd for RT evolution withA=0.5.
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that it may not be possible to achieve the theoretical conver-
gence rate askD→0.

The amplitude at which a mode transitions from exponen-
tial growth s1d to nonlinear evolution given by Eq.s3d may
be inferred by determining the time at which the linear and
nonlinear modal velocities become the same. This procedure,
attributed to Fermi by Layzerf11g, is often used in modeling
the role of initial conditions in the late-time dynamicsf8,9g.
Thus, we may obtaintnl from the following:

vb = Ghnl =
h0G

2
expsGtnld. s10d

Then, the transition amplitudehnl is determined trivially by
combining Eqs.s1d ands10d. Figure 4 showshnlk as a func-

tion of A, and is a comparison of theoreticalfG determined
from Eq. s1d andvb from modelsg and numericalsG andvb
obtained directly from simulationsd values. hnlk from the
simulations shows excellent agreement with the Goncharov
model. The lower Atwood number cases experience a longer
linear growth stage, and a delayed transition to nonlinearity
due to smaller values ofG. Furthermore, the bubbles stay
linear up to higher amplitudes for the low Atwood number
cases. This may be because at low density ratios, the shape
of the interface stays approximately sinusoidal even at higher
amplitudes. In contrast, the high Atwood number cases soon
resemble a square wave, thus possibly deviating from the
classical growth rate. The transition timetnl was used in de-
termininghb for Fig. 1 so that

hb = vbst − tnld + h0 coshsGtnld = 0.8lb, s11d

wherevb was chosen according to Eq.s3d, since Goncharov’s
model gives the best agreement in Fig. 4.

At A=1, we can easily show from the following analysis
that hnlk=1, as observed in Fig. 4. Usingvb,A=1,Îg/k from
the models in Eq.s9d, we get

tnl =
1

G
lnS2vb,A=1

h0G
D . s12d

Thus, the nonlinear transition amplitude at an Atwood num-
ber of 1 is given by

hnlk =
h0

2
expsGtnldk =

vb

Îg/k
= 1 s13d

in agreement with our simulations.
Figure 5 shows the asymptotic scaled bubble velocity

vscl,b=vb/ÎAgl /2 as a function of the Atwood number at
different zone widths. The error associated with determining
vscl,b was,10% for these simulations. Sohn’s analysisf18g
gives vb/ÎAgl /2 independent ofA, while Goncharov’s

FIG. 3. sad Convergence of the growth rateG at different Atwood numbers andsbd the nondimensional viscosity coefficientÃ at different
zoning.

FIG. 4. Nonlinear saturation amplitudeshnlk from simulations
and theory as a function ofA.
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equations19d for a 3D bubble predictsvscl,b=Î2/ps1+Ad
f17g. The model suggested by Abarzhiet al. f22g is also
shown in Fig. 5, and differs from Goncharov’s solution at
low density ratios. All the models agree with Layzer’s solu-
tion f11g sand our simulationsd at A=1, but diverge with
decreasingA. For a grid resolutionù8 zones/l, our simula-
tions show the closest agreement with Goncharov.

We note that Goncharov uses a different form of the po-
tential function from Sohn. In 3D cylindrical geometry,f17g
uses for the heavy and light fluid potentials

fG
h = astdJ0skrde−kz, fG

l = b1stdJ0skrdekz+ b2stdz
s14ad

in contrast to Sohn whose choices of velocity potentials were
f18g

fS
h = astdJ0skrde−kz, fS

l = − astdJ0skrde−kz, s14bd

if one makes the equivalencek=b1/R, whereR is the radius
of the cylinder, andb1 is the first zero ofJ0. Abarzhi et al.
f22g point out thats14bd and similar models result in a net
mass flux across the interface atz=0. This difficulty is
solved by Goncharov with the addition of the mass-flux term
in s14ad. However, this extra source term violates the zero-
flux conditions atz→−`. As our simulations have shown
here, Goncharov’s model appears to work well near the
bubble tip: Since the flow around the bubble tip determines
the bubble terminal velocity, we conclude thats14ad ad-
equately captures the physics in this region of the flow. The
violation of boundary conditions at infinity does not seem to
affect the solution at the interface, particularly since it is
claimed to be valid only near the interface. Mikaelianf12g
also obtains Eq.s3d by analytically solving the governing
equations for a special value of the initial amplitudeh0
=1/2k. We also note that a higher approximation of
Abarzhi’s solution f29g gives better agreement with our
simulations and Eq.s3d. ForA→0, this higher order solution
gives vb,1.5ÎAg/k, while the corresponding expression

from the drag-buoyancy model isvb,1.4ÎAg/k.
Figure 6sad is a comparison of thez profile of the

asymptotic vertical velocity associated with the bubble, from
simulations and the Goncharov model atA=0.9. The
asymptotic velocityvzszd from the model was inferred using
f30g

b1std =
ż0sk + 8z2d
ksk − 8z2d

, b2std =
16ż0z2

s8z2 − kd
s15d

in Eq. s14ad, whereż0 is the bubble tip velocity andz2 is the
bubble curvature. Fort→`, z2→−k/8, giving b1→0 and

b2→ ż0=vb. Thus at late times, Goncharov predicts that this
velocity be constant everywhere within the light fluid. The
velocity associated with the light fluid was calculated from
our simulations using

vbulkszd =
E f lvzdAszd

E f ldAszd
, s16d

where f l is the fraction by volume of the light fluid. Within
the bubble,vbulkszd is constant and shows reasonable agree-

FIG. 5. The scaled bubblesvb/ÎAgl /2d velocities as a function
of A for different zoning.

FIG. 6. sad Comparison of the vertical velocity profile from the
simulations and the Goncharov model atA=0.9. sbd The f l =0.5
contour in a diagonal plane from theA=0.9 simulation, showing the
onset of Kelvin-Helmholtz rollups.
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ment withb2 from Eqs.s14d and s15d. The peaks ofvbulkszd
from the simulations correspond closely to kinks on the
bubble surfacefFig. 6sbdg, indicating the onset of Kelvin-
Helmholtz rollups.

This effect is more pronounced at lowA fFigs. 7sad and
7sbdg, where the bubble cross section shows greater varia-
tions. From mass conservation, we expect the flow to accel-
erate as it enters a narrower section and vice versa. This is
confirmed by the locations of peaks and valleys ofvbulkszd in
Fig. 7sad, which are in good correlation with the features in
Fig. 7sbd. To obtain the true bulk velocity driving a bubble,
vbulkszd is averaged alongz between points where the veloc-
ity is 50% of the peak. The results from this procedure at
different Atwood numbers are compared with Eq.s3d in Fig.
8, and show good agreement. Thus, the presence of vortices
may modify the local velocities, but not the bulk motion
driving the bubble, which remains in agreement with the
potential flow approximation.

It is easy to gain physical insight into the bubble behavior
from a drag-buoyancy description of the flowf19,20g. For
bubble evolution in the steady state, drag and buoyancy
forces on the bubble balance each other giving

sr2 − r1dg =
Cd

l
r2vb

2. s17d

Oronet al. f20g suggest takingCd=2p, giving vb identical to
Eq. s3d. A similar argument applied to the spikes gives

vs ,Î 2A

1 − A

g

k
, s18d

which is unbounded forA→1, denoting the free-fall behav-
ior of spikes.

We note the simulations of Li, Jin, and Glimmf31g who
obtain vscl,b largely independent ofA, in contrast to our re-
sults. However, their simulations were confined toA.0.5,
where the sensitivity to density ratios is smallsonly one of
their simulations was atA=0.33, reporting a value ofvscl,b
,0.56d. Li f32g reports a higher value ofvscl,b=0.63 atA
=0.33, in closer agreement with our results, while Heet al.
f33g obtain vscl,b=0.61 and 0.6 atA=0.5 and 0.9, respec-
tively. One may also infer a scaled bubble velocity from the
merger simulations of Lif26g for the case where the diameter
ratio of adjacent bubbles is close to unity, so that they behave
effectively as a periodic array. Then, we obtain forA=0.67,
vscl,b=0.37 from one of Li’s simulations. The low Atwood
numbersA=0d simulation off34g givesvscl,b=0.75, in good
agreement with our results. Note that Dimonteet al. f27g
also reported values ofvscl,b at A=0.5 for a single-mode flow
from different benchmark codes commonly used in the study
of RT in stabilities. The scaled bubble velocities fromf27g
were determined to be 0.62±0.03.

The time histories of spike velocities for different Atwood
numbers are shown in Fig. 9sad, and show a gradual increase
for Aù0.5. Based on 2D simulations, Dalyf35g suggested
that the bubble diameter increases withA according toDb
=lbs1+Ad /2. Spikes which are narrower at highA have
greater velocities from mass conservation. At infinite density

FIG. 7. sad Comparison of the vertical velocity profile from the
simulations and the Goncharov model atA=0.005.sbd The f l =0.5
contour in a diagonal plane from theA=0.005 simulation, showing
the onset of Kelvin-Helmholtz rollups.

FIG. 8. Thez-averaged bulk bubble vertical velocity from the
simulations, compared with the Goncharov model.
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ratios, the spikes exhibit free-fall behaviorshs=
1
2gt2d. The

corresponding nondimensional acceleration ratessḧs/2Agd
are shown in Fig. 9sbd, and approach 0.5 atA=1, indicating
free fall. We note that this tendency toward free-fall behavior
has been observed elsewhere, in the simulations of Heet al.

f33g, whose spike acceleration rates correspond toḧs/2Ag
=0.36 atA=0.9.

The scaled spike velocitiesvscl,s sFig. 10d also show a
dependence onA, in agreement withf17,19g. The spike ve-
locities were determined using a procedure similar to that
applied to the bubbles described above. At infinite density
ratios, thevscl,s from the model becomes unbounded, because
the spikes experience free fall, givinghs~ t2. In Fig. 10, only
the cases withAø0.5 are shown, since the spike velocities
are no longer constant at Atwood numbers above this value.

The convergence properties of bubble and spike velocities
at different Atwood numbers are shown in Figs. 11sad and

11sbd, respectively. The grid spacingD is normalized by the
wave numberk of the imposed perturbation. Bubbles are
better resolved at higher values ofA, because they grow to a
much larger diameter. For instance, atA=1, the convergence
curve is almost flat, and the bubble velocity is resolved for
all the zone widths except the largest. The converse is true
for spike velocities: At higher density differences, the spikes
are narrower and are under-resolved forkD.0.4. Zoning
studies associated with numerical simulations must account
for the variation of bubble and spike velocities with the den-
sity difference. In the linear stage, as seen in Fig. 3sbd, the
convergence of the growth rates is not a function ofA, since
the heavy and light fluids behave identically. However, the
convergence criterion for the linear growth stage of the RT
instability is more severe than for the nonlinear stage.

Figure 12 shows the bubble frontsZbsx,yd at A=0.1 and
0.9, identified as the 50% isosurface of volume fraction.
From the figure, it appears that forr /l@1, the bubble fronts
resemble a sphere rather than a parabolafz=z0std+z2r

2g as
suggested by the potential flow models. The dash-dotted line
shows a sphere with a curvature ofz2,−k/6.7=−0.09f17g,
for comparison. The radius of curvature was obtained by
fitting a sphere to the bubble surface by considering points
located within a distance ofl /8 from the center, using a
least-squares techniquesthe procedure was repeated by in-
cluding points in the 0, r ,l /4 region with nearly identical
resultsd. A parabolic fit was also performed using a least-
squares technique, and for the regionZbùhb/2.

z2 is used by Goncharov and Sohn to describe the shape
of the interface between the fluids of different densities; they
both predict a constant value independent ofA. In good
agreement with Goncharov and the 3D simulations of Oparin
and Abarzhif36g at A=0.82, Fig. 13 showsz2,−k/6.7 from
a spherical fit, independent ofA, upon saturation. The para-
bolic fit does not perform as well, and gives lower values for
z2 than the above-mentioned models. Abarzhiet al. f22g
stipulate that the curvature varies withA at low density dif-

FIG. 9. sad Spike velocitiesvs vs tÎAgk at different Atwood numbers showing acceleration forAù0.5. sbd The corresponding spike
acceleration rate for differentA.

FIG. 10. The scaled spikesvs/ÎAgl /2d velocities as a function
of A for different zoning.
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ferences. Neither the spherical nor the parabolic fit shows
such a trend.

IV. SUMMARY AND DISCUSSION

In conclusion, the scaled velocities of bubbles were found
to depend on the density ratio of RT flows, while the Froude
numbers defined by Eq.s5d show no such dependence, in
agreement with a recently proposed model based on potential
flow theory f17g and previous drag-buoyancy models
f19,20g. This picture is complicated in our simulations by the
presence of vortices at the bubble-spike interface at lowA,

which vary the bubble cross section and hence the vertical
velocity as a consequence of mass conservation. However, a
suitable bulk bubble velocity may be obtained by averaging
out area variations of the bubble, givingvbulk in agreement
with the potential flow model of Goncharov. The bubble cur-
vature, a critical parameter in all these models, is indepen-
dent of the Atwood number, in contrast tof22g, which sug-
gests variations at low density differences. At lowA, spike
velocities agree with the results off17,19,20g, and make a
continuous transition to free-fall behavior at highA. Ulti-
mately atA=1, spikes are in free fall, characterized by a
penetration distance that grows as1

2gt2.
The bubble behavior reported here suggests that the

growth constant for turbulent RT flow,ab, decreases slightly
with increasingA, according to Dimontef8g who considered
the possibility of a Froude number that behaved according to

FIG. 11. Convergence of the bubblesad and spikesbd scaled velocities for differentA.

FIG. 12. Bubble front profilesZbsx,yd from theA=0.1 and 0.9
cases. The theoretical bubble curvature ofRbk=3.35 from f17g is
shown for comparison.

FIG. 13. Bubble curvature from simulationssusing parabolic
and spherical fitsd and from potential flow models.

P. RAMAPRABHU AND G. DIMONTE PHYSICAL REVIEW E71, 036314s2005d

036314-8



Goncharov’s modelf17g. Dimontef8g further showed thatab
decreases by 25% as the Atwood number is varied from 0 to
1. Measurements from linear electric motor experimentsf37g
support this claim although theab value recovers slightly at
very high density differences, possibly due to surface-tension
effects. We believe high resolution numerical simulations of
the multimode RT flow at different Atwood numbers would
be helpful in further understanding these issues.

While our results presented here would be helpful in de-
veloping turbulence models based on single-mode dynamics
of bubbles, there are some outstanding issues that must be
addressed before such models can be improved. One such
issue is the observed higher values of Froude numbersFr
,1d of bubbles in a chaotic bubble front, resembling the
isolated plumes in Scorer’s experimentf21g. This is because
leading bubbles in a turbulent RT flow would experience less
counterflow dragsfrom mass conservationd, resulting in a
greater bubble velocity and Froude number. Experiments and
numerical simulations similar to those reported here, of iso-
lated plumes as a function of the density ratio could shed
light on turbulent RT bubble behavior.

The convergence rates of bubble and spike growth rates in
the nonlinear regime depend on the density ratio because of
changes in the relative size of bubbles and spikes: For in-
stance at highA, bubbles are large and over-resolved, while

the asymptotic spike structures are under-resolved. Conse-
quently, bubble velocities converge faster at higher density
ratios, while the converse holds true for spikes. Convergence
studies of RT flow should account for the Atwood depen-
dence of bubble and spike behavior.

Finally, the implications of these results extend to bubble
merger and competition models, models that characterize the
role of initial conditions, and ‘mix’ models of RT flows.
Similar studies of Richtmeyer-MeshkovsRMd flows should
also be pursued. Many of the potential flow models dis-
cussed here have already been extended to RM flow, and
await experimental or numerical verification. Furthermore,
the behavior of isolated bubbles and bubble-bubble interac-
tion as a function of the Atwood number should be investi-
gated.
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