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Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio
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The behavior of a periodic array of Rayleigh-Taylor bublikesd spikesof wavelength\ is investigated at
different density ratios using three-dimensional numerical simulations. The scaled bubble and spike velocities
(vps/ VAQN/2), are found to vary with the Atwood numbéy, and are compared with recent potential flow
theories. Simulations at different grid resolutions reveal that the convergence rates of bubble velocities improve
with increasingA, while the converse holds true for spike velocities. The asymptotic radius of curvature at the
bubble tip is found to be independent Af consistent with potential flow theory. These results are useful in
validating potential flow theory models of the nonlinear stage of the Rayleigh-Taylor instability.
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[. INTRODUCTION lar potential flow model to describe the flow around the
bubble tip for a fluid-vacuum interfadd&=1). He considered
cylindrical bubbles in three dimensioli3D), represented by
a Bessel function for the velocity potential. Then the Ber-
noulli equations are applied to the bubble tip, to yield ordi-
o : . nary differential equations for the position, velocity, and ra-
Ejhrﬁ/elzerr:i?(lin((:‘;orneﬂc;‘jcrggr;:];utﬂgrr‘m%rr?jgzg} ;/l\ilglzrelr;[fri]r?iteRs-li—mald'us o_f curvature of the bubble. Analytlcal_ solu_tlons to these
) equations were provided recently by Mikaeligh2]. The

E;r;u[gagggsréﬁgotsoed at the interface grow exponentially Inasymptotic bubble velocity from such models is

h=h, coshTt). (1) Vb= CVar, 2

The interface between two fluids of different densities
(p1>p,) is unstable if the light fluid pushes against the
heavy [Rayleigh-Taylor(RT) instability [1,2]]. Such insta-
bilities have been observed in type Il supernof@k and in

) _ ) .~ whereg is the acceleration is the wavelength, an@ was

At large amplitudes, the light fluid penetrates the heavy injetermined to be-0.5 from experimentgl0,13. Zhang[14]
the form ofbubbleswith a constant terminal velocity, while  oytanded Layzer's model to RT spikesfat 1. Hecht, Alon,
fingers of the heavy fluid formpikes For small density dif- 5 Shvartg15] applied a similar analysis to other flow
ferences, the flow is symmetric with respect to the bubblgjy,ations including bubble evolution through a layer of finite
and spike penetration. This symmetry is broken at highefhickness (2D), two-bubble competition(2D), and a 3D
Atwood numbers[A=(p;~pp)/(p1+pp)], as spikes grow pppie in a rectangular geometry. They also argued that to
faster than bubbles, ultimately approaching free &l  second order, a square mode has the same growth rate as a
~1?) at infinite density ratios. cylindrical mode. The 3D simulations of Hecht al. [16]

When a spectrum of wavelengths is present, the resulting|so obtain similar penetration distances for square and cy-
flow is chaotic, and evolves through interactions betweenindrical modes to within numerical accuracy. Thus, our re-
bubbles(spikes of different sizes. These modal interactions sults below for a square periodic array are valid for a flow
may involve the merger of two bubbles to form a largerinitialized with a Bessel functiod, for the density profile.
structure[6,7], or the sampling of successively longer wave-  More recently, Goncharo{17] and Sohn[18] have ex-
lengths from the modes present in the initial conditifBs  tended such models to arbitrary density ratios. The models
Such phenomena are often described by modeling singlegpply potential theory to the flow around the bubble tip, and
bubble behavior and bubble-bubble interactions in the nonconverge to Layzer’s approximation in the limit éf=1.
linear stage. Furthermore, models that characterize the rolgoncharov uses a Bessel function for the velocity potentials

of the initial conditions on the turbulent RT flo{8,9] also  of the heavy and light fluids, and finds in the asymptotic
rely on single-mode dynamics in the nonlinear stage, to defimit that the bubble velocity is given by

velop a picture of the turbulent RT flow. However, such ef-
forts depend critically on the knowledge of single-mode o =1.02 2A g 3)
bubble terminal velocities as a function of the Atwood num- b= ™ 1+Ak’
ber[8]. In this paper, we report results from numerical simu- _ . .
lations of the linear and nonlinear stages of RT evolution. wes‘?h”’ who.uses a dn‘ferent_form O.f the p.otentlal function
review three recently proposed potential flow models of thediscussed in Sec. liifor the light fluid, obtains
RT bubble, and conclude that our results compare favorably [AgR
with the model of Goncharopl7]. Up~ 1\, s

Davies and Taylof10] were the first to propose a poten- P
tial flow theory approach to describe single-mode bubble bewheres; represents the first zero of the Bessel functiRiis
havior in the nonlinear regime. Layzgtl] suggested a simi- the tube radius, and may be related to the wave number using

(4)
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B1/R~Kk. For lower density ratios, the two models diverge, thus preventing spurious overshoots and undershoots associ-
until the ratio of the Froude numbers from Sohn’s model toated with higher order numerical schemes. A Poisson equa-
Goncharov's model is 1:1.4 &=0. The steady-state bubble tion for pressure correction is solved at every time step to
velocity may also be obtained by equating the buoyancy anénforce global mass conservation to within a tolerance of
drag forces experienced by a rising 3D bubble. Interestinglyl0°. This algorithm belongs to the class of techniques com-
drag-buoyancy models such as those proposed by @&l@h ~ monly referred to as monotone integrated large eddy simula-
[19] and Oronet al.[20] agree with Eq(3). Note that while tions (MILES), and has been demonstrated to be effective in
the Froude number associated with a RT bubble has bedhe simulation of flows with shocks and discontuinities such
defined in several ways, we adopt the physically intuitiveas RT and Richtmyer-Meshkov instabilitiE25].
definition of Scoref21] and Alonet al.[19] Periodic boundary conditions in the lateral directions, and
zero-flux conditions in the vertical direction were employed.
vy = Fr @g&_ (5) The perturbations were initialized as cosine waves of the
2 density surface:

Defined this way, the Froude number may be interpreted as a 27X 2wy

ratio of terms in the steady-state drag-buoyancy equation, ho(x,y) = a0 co BN AR ENAE (8)

and will be later shown to be independent of the Atwood

number. This form of the perturbation places the bubble at the center
We also compare our results with a recent model proposedf the box, while the spikes appear at the four corners. The

by Abarzhi, Nishihara, and Glimif22] who employ a mul- wavelength of the perturbation was set to 10 cm, while the

tiple harmonic analysis to explore the shape of the bubble @amplitudea, was 0.1 cm to ensure that the modes are well

late time (Goncharov, who also uses a similar analysis, rewithin the nonlinear saturation thresholtl,k~1). To test

ports that the amplitudes of higher harmonic terms used tthe effect of zoning, the calculations were performed at grid

describe the bubble front vanish rapidl{However, the cen- resolutions oi\/A=4, 8, 16, 32, and 64 whetk is the zone

tral difference between the Goncharov-type modiislud-  width. The size of the computational domain wasx110

ing the models of Sohn and Layierand the approach x40 cn?in thex, y, andz directions, respectivelthere,z is

adopted by Abarzhet al. is that the latter forces the flow to the direction of the gravity vectorThe simulations had At-

satisfy boundary conditions ateetalong the direction of wood numbers of 0.005, 0.1, 0.25, 0.5, 0.75, 0.9, and 1. The

gravity. Goncharov’s analysis, on the other hand, is validacceleration was set to 2 cni/s

near the bubble tip: his choice of potential function includes

a source term for mass at negative infinity, to satisfy the

zero-mass-flux condition across the interface. Abagetlail’s lll. RESULTS

terminal velocity(and bubble curvaturg) differs from Gon- ) .

charov's at low Atwood numbers. While the expressions for Figures 1a), 1(b), and 1c) show the isosurfaces of 50%

the exact solutions will not be reproduced here, they may bgolume frgction at late times fk=0.1, 0.5, and 0.9, respec-
obtained by solving the following set of equations foand tively. Spikes form at the corners of the computational do-

vy [22]: main, and are shown in a diagonal cross section for these
simulations in Figs. ), 1(e), and If). The simulations
2\ (V31 9\ (3. were performed at a resolution of 882X 128 zones.
v T\ AT\ “\1s) T 0, (6) Bubbles and spikes show greater symmetry at lower density
differenceqFigs. 1d) and Xe)], while spikes outpace bubble
—(8l¢] 3/2 growth atA=0.9 Fig. 1f). The lower Atwood number cases
vp = Vg/k(T) (7) show more vorticity in general, evidenced by the formation

of Kelvin-Helmholtz type roll-ups on the spike surfaces. The

In this paper, we test the above models using 3D numericd/MeS represented in Fig. 1 were chosen such that the bubble
simulations of a square periodic array of RT bubbles, at difPénetration in each of the cases is roughly the same, i.e.,
ferent grid resolutions. Section Il contains a description of''o A~0.8. ) ,

the numerical technique used, and the computational setup. 1he corresponding bubble amplitudg [shown on a
The results are presented in Sec. Ill, while Sec. IV contains §6Milogarithmic plot in Fig. @] was deduced by tracking

discussion and summary of our findings. the bubble tip. The bubble amplitudg, (in centimetery
shows a region of exponential gronth<<4 s), followed by
Il NUMERICS saturation of the bubble velociffig. 2(b)]. The bubble am-

plitude from Eq.(1) is shown as the solid line in Fig(&,

A 3D, third-order accurate, finite volume Eulerian solverand is in good agreement with our simulations fer4 s.
was used for the numerical calculations. The algorithm and’he Froude number and the scaled bubble velocity were then
numerical techniques are described in detai[28]. Some inferred from fitting a straight line teh,/dt in Fig. 2b) at
essential features are reviewed herein. Numerical dissipatidate times.
provides an artificial viscosity that smooths out sharp gradi- At a resolution of 64 zone&/ a numerical instability at
ents characteristic of Euler equation solutions. The van Leethe bubble tip was observed f8r>0.75. The bubbles which
technique[24] was used to determine the convective fluxes,occupy much of the computational domain at these density
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/’g
FIG. 1. Evolution of a single-mode RT bubble

(a) (b) (©) for A=0.1 (a), 0.5 (b), and 0.9(c). The spike
cross sections in a diagonal plane are shown in
(d), (e), and (f) for the same cases. The times
shown are such thdt,~ 0.8\ for each case.

d (© ®

ratios are over-resolved. Consequently, secondary ridges Indeed, the scaling relatio(®) may be directly verified
form at the bubble front at late times. This instability is notusing our simulations. The exponential growth rétenor-
unlike that observed by Lj26], at A=0.905 and near the malized by the inviscid classical growth ratékgis shown
incompressible limit. The instability observed here disap-in Fig. 3(a) for different Atwood numbers. The growth rate
pears with the addition of a small viscosity that damps theapproaches-95% of its inviscid value akA ~0.098(corre-
artificial secondary modes. This viscosity was chosen tGponding to 64 zonea). I' is modified in the presence of
match the numerical dissipation from the 32 zonesase jscosity according to the dispersion relation given by Chan-
which remained stable even at high Atwood numbers. Theyrasekhaf5]. Solving the dispersion equation to fit the nu-
numerical viscosity may be determined from the scallngmerically obtained growth rates, we may infer an effective
(27,28 numerical viscosityy and hencew from Eq.(9). The result,
y:m\,'rgﬁ, (9) shown in Fig. 8b) for different zoning, is independent &,

. . - . and corresponds tes=0.3310.09, thus validating Ed9).

where the coefficients was obtained by fitting the numerical The 64 zonesy case exhibits higher values of, because

solutpn to the classical growth rates in the linear stage Athe convergence rate drops at higher resolutions, indicating
described below.
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FIG. 3. (a) Convergence of the growth rakeat different Atwood numbers arn®) the nondimensional viscosity coefficiestat different

zoning.

that it may not be possible to achieve the theoretical convertion of A, and is a comparison of theoretiddl determined

gence rate akA— 0.

from Eq. (1) andv, from modelg and numericall’ and v,

The amplitude at which a mode transitions from exponen-obtained directly from simulationsvalues. h,k from the

tial growth (1) to nonlinear evolution given by E¢3) may

simulations shows excellent agreement with the Goncharov

be inferred by determining the time at which the linear andmodel. The lower Atwood number cases experience a longer
nonlinear modal velocities become the same. This procedurénear growth stage, and a delayed transition to nonlinearity

attributed to Fermi by Layzd 1], is often used in modeling
the role of initial conditions in the late-time dynamii&9].
Thus, we may obtaity, from the following:

hol"
vp=Chy = % exp(T'ty). (10)

Then, the transition amplitude, is determined trivially by
combining Eqgs(1) and(10). Figure 4 show#$,k as a func-

2=
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1‘6 ™ .
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FIG. 4. Nonlinear saturation amplitudégk from simulations
and theory as a function &.

due to smaller values of. Furthermore, the bubbles stay
linear up to higher amplitudes for the low Atwood number
cases. This may be because at low density ratios, the shape
of the interface stays approximately sinusoidal even at higher
amplitudes. In contrast, the high Atwood number cases soon
resemble a square wave, thus possibly deviating from the
classical growth rate. The transition tiyg was used in de-
termining h,, for Fig. 1 so that

h, = vp(t = ty) + ho coshI't,) = 0.8\, (11

wherev, was chosen according to E@), since Goncharov’s
model gives the best agreement in Fig. 4.

At A=1, we can easily show from the following analysis
thath, k=1, as observed in Fig. 4. Using a=, ~ \gT< from
the models in Eq(9), we get

1 ZUbAzl)
ty=—=Inl ——|. 12
nl F”( hOF ( )

Thus, the nonlinear transition amplitude at an Atwood num-
ber of 1 is given by

ho Ub
h,k=— expl'ty)k=—==1 13
nl 2 F( nl) v’g/k ( )

in agreement with our simulations.

Figure 5 shows the asymptotic scaled bubble velocity
Vsap=Up/ VAGN/2 as a function of the Atwood number at
different zone widths. The error associated with determining
Usclp Was ~10% for these simulations. Sohn’s analykis]
gives vp/VAgN/2 independent ofA, while Goncharov’s
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FIG. 5. The scaled bubbl@,/VAg\/2) velocities as a function
of A for different zoning. (@)

equation(19) for a 3D bubble predict®qyp=2/m(1+A)

[17]. The model suggested by Abarzét al. [22] is also

shown in Fig. 5, and differs from Goncharov’s solution at

low density ratios. All the models agree with Layzer’s solu-

tion [11] (and our simulationsat A=1, but diverge with

decreasingh. For a grid resolutior=8 zonesh, our simula-

tions show the closest agreement with Goncharov. (b)
We note that Goncharov uses a different form of the po-

tential function from Sohn. In 3D cylindrical geometf,7] FIG. 6. () Comparison of the vertical velocity profile from the

uses for the heavy and light fluid potentials simulations and the Goncharov model &+0.9. (b) The f;=0.5

contour in a diagonal plane from ti#e=0.9 simulation, showing the
q’% = a(t)Jo(kr)e™?, ¢'G = by (t)Jo(kr)e?+ by(t)z onset of Kelvin-Helmholtz rollups.

(143 N
. : . . from the drag-buoyancy model ig~ 1.4yAg/k.
|[r18c]ontrast to Sohn whose choices of velocity potentials were Figure Ga is a comparison of thez profile of the
asymptotic vertical velocity associated with the bubble, from
pi=a(t)Jo(kne™? ps=-a(t)o(kr)e™?, ~(14b)  simulations and the Goncharov model &=0.9. The

) ] ] ) asymptotic velocity,(z) from the model was inferred using
if one makes the equivalenée 8;/R, whereR is the radius [30]

of the cylinder, ands, is the first zero ofl,. Abarzhiet al.

[22] point out that(14b) and similar models result in a net r(k+8 161
mass flux across the interface at0. This difficulty is bl(t):iO(k—SgZ), bz(t)_&
solved by Goncharov with the addition of the mass-flux term (k=8

(8- K
in (148. However, this extra source term violates the zero- Lo . . .
flux conditions atz— —«. As our simulations have shown in Eq. (143, whereq is the bubble tip velocity ang, is the

here, Goncharov’'s model appears to work well near thubble curvature. Fot—c, ,—-k/8, giving b;—0 and

bubble tip: Since the flow around the bubble tip determined2— ¢o=vp- Thus at late times, Goncharov predicts that this
the bubble terminal velocity, we conclude thét4a ad- veloc!ty be constant (_averywh.ere W|§h|n the light fluid. The
equately captures the physics in this region of the flow. Thé/eloc!ty asspmated with the light fluid was calculated from
violation of boundary conditions at infinity does not seem to®Ur Simulations using

affect the solution at the interface, particularly since it is
claimed to be valid only near the interface. Mikaelid2] fflvsz(z)
also obtains Eq(3) by analytically solving the governing Veui2) =

equations for a special value of the initial amplitutig bulk ’
=1/2k. We also note that a higher approximation of Jf,dA(z)
Abarzhi's solution[29] gives better agreement with our

simulations and Eq.3). ForA— 0, this higher order solution wheref; is the fraction by volume of the light fluid. Within
gives v,~ 1.5/Ag/k, while the corresponding expression the bubbley,,(2) is constant and shows reasonable agree-

(15

(16)
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FIG. 8. Thez-averaged bulk bubble vertical velocity from the
simulations, compared with the Goncharov model.
Cq
- (2= P19 =~ pav. (17)
Oronet al.[20] suggest takin@C4= 27, giving v}, identical to
®) Eqg. (3). A similar argument applied to the spikes gives
FIG. 7. (@) Comparison of the vertical velocity profile from the A
simulations and the Goncharov model/at 0.005.(b) The f;=0.5 Vs~ ,_9, (18)
contour in a diagonal plane from the=0.005 simulation, showing 1-AK
the onset of Kelvin-Helmholtz rollups. L .
P which is unbounded foA— 1, denoting the free-fall behav-

ior of spikes.

We note the simulations of Li, Jin, and Glimf81] who
ment withb, from Egs.(14) and (15). The peaks obyuk(2)  obtainuvyy, largely independent o, in contrast to our re-
from the simulations correspond closely to kinks on thesults. However, their simulations were confinedAo- 0.5,
bubble surfacdFig. 6(b)], indicating the onset of Kelvin- where the sensitivity to density ratios is smaihly one of
Helmholtz rollups. their simulations was aA=0.33, reporting a value afgp,

This effect is more pronounced at lov[Figs. 7a) and  ~0.56). Li [32] reports a higher value afsy,=0.63 atA
7(b)], where the bubble cross section shows greater varia=0.33, in closer agreement with our results, while éteal.
tions. From mass conservation, we expect the flow to accel-33] obtain v¢;,=0.61 and 0.6 af=0.5 and 0.9, respec-

erate as it enters a narrower section and vice versa. This fely. One may also infer a scaled bubble velocity from the
confirmed by the locations of peaks and valleysgf(z) in ~ Merger simulations of L[i26] for the case where the diameter

Fig. 7(a), which are in good correlation with the features in ratio of adjacent bubbles is close to unity, so that they behave
Fig. 7(b). To obtain the true bulk velocity driving a bubble, Effectively as a periodic array. Then, we obtain A0.67,
Useip=0.37 from one of Li's simulations. The low Atwood

e s ooty B0 Silaon o st 075 g
. ) . g agreement with our results. Note that Dimomeal. [27]
glﬁ:r:znéﬁ\\;vvood Sumbers are:[ c_lc_)rr]npartﬁd with &8).in I?g. . also reported values ot at A=0.5 for a single-mode flow
' W good agreement. Thus, Ihe presence of VOrtcCes, ., yitterent benchmark codes commonly used in the study
may modify the local \_/elocmes,_ bu_t not the bulk MotioN ¢ BT in stabilities. The scaled bubble velocities froav]
driving the bubble, which remains in agreement with theWere determined to be 0.62+0.03.
potential flow approximation. ~ The time histories of spike velocities for different Atwood
It is easy to gain physical insight into the bubble behavior, mpers are shown in Fig(®, and show a gradual increase
from a drag-buoyancy description of the figu9,20. For  for A=0.5. Based on 2D simulations, Dalg5] suggested
bubble evolution in the steady state, drag and buoyancyhat the bubble diameter increases wihaccording toD,,
forces on the bubble balance each other giving =\,(1+A)/2. Spikes which are narrower at high have
greater velocities from mass conservation. At infinite density
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FIG. 9. (a) Spike velocitiesvg vs t\s“A—gk at different Atwood numbers showing acceleration #for 0.5. (b) The corresponding spike
acceleration rate for differer.

ratios, the spikes exhibit free-fall behavith:%gtz). The  11(b), respectively. The grid spaciny is normalized by the

corresponding nondimensional acceleration rdteg2Ag) \l;"i\t’e num:)ericj Otfht.h?] impc;sed/&%rturbatio?r; Bubblest are
are shown in Fig. @), and approach 0.5 &=1, indicating etter resolved at higner vaiuesAfbecause they grow to a

free fall. We note that this tendency toward free-fall behaviormUCh larger diameter. For instance /st 1, the convergence

has been observed elsewhere, in the simulations 6t curve is almogt flat, and the bubble velocity is resolvgd for
all the zone widths except the largest. The converse is true

[33], whose spike acceleration rates corresponhf@Ag  for spike velocities: At higher density differences, the spikes
=0.36 atA=0.9. - . are narrower and are under-resolved kir>0.4. Zoning
The scaled spike velocitiess (Fig. 10 also show a  syydies associated with numerical simulations must account
dependence oA, in agreement wit17,19. The spike ve-  for the variation of bubble and spike velocities with the den-
locities were determined using a procedure similar to thatsity difference. In the linear stage, as seen in Fi@p),3the
applied to the bubbles described above. At infinite de”Si%onvergence of the growth rates is not a functiompsince
ratios, thevsqs from the modell begqmesgnboqnded, becausgne heavy and light fluids behave identically. However, the
the spikes experience free fall, giviing>t°. In Fig. 10, only  ¢onvergence criterion for the linear growth stage of the RT
the cases wittA=<0.5 are shown, since the spike Ve'_oc't'esinstability is more severe than for the nonlinear stage.
are no longer constant at Atwood numbers above this value. Figure 12 shows the bubble fronfg(x,y) at A=0.1 and
The convergence properties of bubble and spike velocitieg g jqentified as the 50% isosurface of volume fraction.
at different Atwood numbers are shown in Figs(@1and  prom the figure, it appears that fof> 1, the bubble fronts

- resemble a sphere rather than a parabply(t)+Z,r?] as
o  4zones/a suggested by the potential flow models. The dash-dotted line
& Szones/d shows a sphere with a curvature &f~ —k/6.7=-0.09[17],
25 v 16 zones/A . . R
& 32zones/d for comparison. The radius of curvature was obtained by
O 64zones/A fitting a sphere to the bubble surface by considering points

2 Goncharov located within a distance of/8 from the center, using a

least-squares techniquthe procedure was repeated by in-
cluding points in the 82r <\/4 region with nearly identical
resultg. A parabolic fit was also performed using a least-
squares technique, and for the regigy® h,/2.

{5, is used by Goncharov and Sohn to describe the shape
of the interface between the fluids of different densities; they
both predict a constant value independent/ofin good
agreement with Goncharov and the 3D simulations of Oparin
and Abarzhi 36] at A=0.82, Fig. 13 showg,~—k/6.7 from

0 1 [ 1 1 1 ! ! i i ’ ol .
0 010203 040506 07 08 09 1 a spherical fit, independent &f upon saturation. The para-

bolic fit does not perform as well, and gives lower values for
FIG. 10. The scaled spik@</\VAg\/2) velocities as a function {» than the above-mentioned models. Abarzghial. [22]
of A for different zoning. stipulate that the curvature varies withat low density dif-
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FIG. 11. Convergence of the bubki@ and spike(b) scaled velocities for differer.

ferences. Neither the spherical nor the parabolic fit showsvhich vary the bubble cross section and hence the vertical
such a trend. velocity as a consequence of mass conservation. However, a
suitable bulk bubble velocity may be obtained by averaging
out area variations of the bubble, giving, in agreement
IV. SUMMARY AND DISCUSSION with the potential flow model of Goncharov. The bubble cur-

vature, a critical parameter in all these models, is indepen-

In conclusion, the scaled velocities of bubbles were founqjent of the Atwood number, in contrast 2], which sug-
to depend on the density ratio of RT flows, while the Froudegests variations at low density differences. At léw spike

numbers defined by Ed5) show no such dependence, in yeacities agree with the results p£7,19,20, and make a
agreement with a recently proposed model based on potentighntinyous transition to free-fall behavior at high Ulti-

flow theory [17] and previous drag-buoyancy models naiey ata=1, spikes are in free fall, characterized by a
[19,20. This picture is complicated in our s_|mulat|0ns by the penetration distance that grows %giz.

presence of vortices at the bubble-spike interface atAow The bubble behavior reported here suggests that the

growth constant for turbulent RT flowy,, decreases slightly

0r 4 with increasingA, according to Dimont¢8] who considered
the possibility of a Froude number that behaved according to
0 -
\ [ ] Parabolic fit
-0.024 i o} Spherical fit
\ ————— Goncharov model
0044 S —~ — — — Soknmodel
~ ™~ e — Abarzhi model
5 -0.06 T
e (2 /2 O \ N e SO
N T g - SO
-0.08 D o o) o o 0
®
0.1 b
0.12-9
0.14 - ° ®
[ ]
-0.16 = ®
-0.18 -
I WU N VRN M NN SN N B
(a) (b) 02 0 01 02 03 04 05 06 07 08 09 1
A
FIG. 12. Bubble front profileZ,(x,y) from theA=0.1 and 0.9
cases. The theoretical bubble curvatureRgk=3.35 from[17] is FIG. 13. Bubble curvature from simulatiossing parabolic
shown for comparison. and spherical fifsand from potential flow models.
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Goncharov’s mod€l17]. Dimonte[8] further showed thaty,  the asymptotic spike structures are under-resolved. Conse-
decreases by 25% as the Atwood r]umber is varigd from O tquently, bubble velocities converge faster at higher density
1. Measurements from linear electric motor experimé8#  ratios, while the converse holds true for spikes. Convergence

support this claim although the, value recovers slightly at  studies of RT flow should account for the Atwood depen-
very high density differences, possibly due to surface-tensio@ence of bubble and spike behavior.
effects. We believe high resolution numerical simulations of = Finally, the implications of these results extend to bubble

the multimode RT flow at different Atwood numbers would merger and competition models, models that characterize the
be helpful in further understanding these issues. _ role of initial conditions, and ‘mix’ models of RT flows.
While our results presented here would be helpful in dejmilar studies of Richtmeyer-Meshkd®RM) flows should
veloping turbulence models based on single-mode dynamicglSo be pursued. Many of the potential flow models dis-
of bubbles, there are some outstanding _issues that must %ﬁssed here hav.e already been extended to RM flow, and
%iir:sizet?] eb%fg srg r\?gghhirgr?grel\?aﬁ?;s boef E:g;%\ée?]m%gg rsugwait experimental or numerical verification. Furthermore,
the behavior of isolated bubbles and bubble-bubble interac-

.Nl) of bubbles na cha’otlc bupble front, 're'semblmg thetion as a function of the Atwood number should be investi-
isolated plumes in Scorer’s experimg@fl]. This is because Sgated

leading bubbles in a turbulent RT flow would experience les

counterflow drag(from mass conservatignresulting in a

greater bubble velocity and Froude number. Experiments and ACKNOWLEDGMENTS

numerical simulations similar to those reported here, of iso-

lated plumes as a function of the density ratio could shed We would like to thank Karnig Mikaelian, Valeri Gon-

light on turbulent RT bubble behavior. charov, and S. I. Abarzhi for valuable conversations. We
The convergence rates of bubble and spike growth rates ithank Malcolm J. Andrews for permitting use of his com-

the nonlinear regime depend on the density ratio because guter program. This work was performed under the auspices

changes in the relative size of bubbles and spikes: For inef the U.S. Department of Energ§DOE) by Los Alamos

stance at high\, bubbles are large and over-resolved, whileNational Laboratory under Contract No. W-7405-ENG-36.

[1] Lord Rayleigh, Scientific Papers Il(Cambridge University 74, 534 (1995.
Press, Cambridge, England, 1900 [20] D. Oronet al, Phys. Plasmas, 2883(2001.
[2] G. I. Taylor, Proc. R. Soc. London, Ser. 201, 192 (1950. [21] R. S. Scorer, J. Fluid Mecr2, 583 (1957.
[3] S. F. Gull, Mon. Not. R. Astron. Socl71, 263 (1975. [22] S. I. Abarzhi, K. Nishihara, and J. Glimm, Phys. Lett.347,
[4] 3. D. Lindl, Inertial Confinement Fusion: The Quest for Igni- 470(2003.
tion and Energy Gain Using Indirect DriveAIP, Woodbury,

[23] M. J. Andrews, Int. J. Numer. Methods Flui@4, 205(1995.
[24] B. Van Leer, J. Comput. Phy3, 276 (1977.
[25] D. L. Youngs, in Proceedings of 16th AIAA Computational

NY, 1998.
[5] S. Chandrasekhalydrodynamic and Hydromagnetic Stability
(Oxford University Press, Oxford, 1951

[6] J. Glimm and X. L. Li, Phys. Fluids31, 2077 (1988. Fluid Dynamics Conference, 2003, AIAA Report No. 2003-
[7] D. Shvarts, U. Alon, D. Ofer, R. L. McCrory, and C. P. Ver- 4102 (unpublishegl
don, Phys. Plasmag, 2465(1995. [26] X. L. Li, Phys. Fluids 8, 336 (1996.
[8] Guy Dimonte, Phys. Rev. B9, 056305(2004). [27] Guy Dimonteet al,, Phys. Fluids16, 1668(2004).
[9] G. Birkhoff, University of California Report No. LA-1862, [28] P. Ramaprabhu, Guy Dimonte, and M. J. Andrefuspub-
1955 (unpublishegl lished.
[10] R. M. Davies and G. |. Taylor, Proc. R. Soc. London, Ser. A[29] S. |. Abarzhi(private communication
200, 375(1950. [30] V. N. Goncharov(private communication
[11] D. Layzer, Astrophys. J122 1 (1955. [31] X. L. Li, B. X. Jin, and J. Glimm, J. Comput. Phy426, 343
[12] K. O. Mikaelian, Phys. Rev. B67, 026319(2003. (1996.
[13] R. Collins, J. Fluid Mech.28, 97 (1967). [32] X. L. Li, Phys. Fluids A 5, 1904(1993.
[14] Q. Zhang, Phys. Rev. Let81, 3391(1998. [33] X. He et al, Phys. Fluids11, 1143(1999.
[15] J. Hecht, U. Alon, and D. Shvarts, Phys. Fluids 4019  [34] G. Tryggvason and S. O. Unverdi, Phys. Fluids 2\ 656
(1994). (1990.
[16] J. Hecht, D. Ofer, U. Alon, D. Shvarts, S. A. Orszag, and R. L.[35] B. J. Daly, Phys. FluidsL0, 297 (1967).
McCrory, Laser Part. Beams3, 423(1995. [36] A. Oparin and S. Abarzhi, Phys. Fluidkl, 3306(1999.
[17] V. N. Goncharov, Phys. Rev. Let88, 134502(2002. [37] Guy Dimonte and M. Schneider, Phys. Fluidlg 304 (2000;
[18] S-I. Sohn, Phys. Rev. B7, 026301(2003. M. Schneider, Guy Dimonte, and B. Remington, Phys. Rev.

[19] U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. Lett. 80, 3507(1998.

036314-9



